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The histone deacetylase enzyme has increasingly become an attractive target for developing novel
anticancer drugs. Hydroxamates are a new class of anticancer agents reported to act by selective
inhibition of the histone deacetylase (HDAC) enzyme. Comparative molecular field analysis (CoMFA)
and comparative molecular similarity indices analysis (CoMSIA) were employed to study
three-dimensional quantitative structure–activity relationships (3D-QSARs). QSAR models were
derived from a training set of 40 molecules. An external test set consisting of 17 molecules was used to
validate the CoMFA and CoMSIA models. All molecules were superimposed on the template structure
by atom-based, multifit and the SYBYL QSAR rigid body field fit alignments. The statistical quality of
the QSAR models was assessed using the parameters r2

conv, r2
cv and r2

pred. In addition to steric and
electronic fields, ClogP was also taken as descriptor to account for lipophilicity. The resulting models
exhibited a good conventional r2

conv and cross-validated r2
cv values up to 0.910 and 0.502 for CoMFA and

0.987 and 0.534 for CoMSIA. Robust cross-validation by 2 groups was performed 25 times to eliminate
chance correlation. The CoMFA models exhibited good external predictivity as compared to that of
CoMSIA models. These 3D-QSAR models are very useful for design of novel HDAC inhibitors.

Introduction

Histone deacetylase (HDAC) inhibitors have gained considerable
interest due to their ability to modulate transcriptional activity.1

HDAC-mediated transcriptional activity represents a common
molecular mechanism of alteration in chromin structure and
blockage of normal cell differentiation. As a result, this class of
inhibitors can block angiogenesis and cell cycling, and promote
apoptosis and cell differentiation. HDAC has become a novel
target for the discovery of drugs for the treatment of cancer
and other diseases.2–7 The number of HDAC enzyme subtypes
has expanded considerably over the past few years, offering
opportunities for the development of HDAC inhibitors with
improved specificity.

A number of natural inhibitors such as trichostatin A (TSA),8

cyclic tetrapeptide trapoxin (TPX),9 HC toxin10 and apicidin11

have been so far reported. Among them, TSA has been identified
as a potent and specific HDAC inhibitor. Synthetic inhibitors
like sodium phenyl butyrate,12 sodium valproate,13 suberanilo
hydroxamic acid (SAHA),14 straight chain TSA and SAHA like
analogues15–17 and oxamflatin18 have been reported. TSA and its
analogues are considered to be mimics of the histone acetyl lysine
side chain. Crystal structures of histone deacetylase-like protein
(HDLP) with TSA and SAHA revealed that hydroxamic acid-
based HDAC inhibitors bind to the deacetylase core by inserting
their aliphatic chains into the HDLP pocket. Their hydroxamic
acid group reaches the polar bottom of the pocket, where it
coordinates with the zinc ion.19
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HDAC inhibitors typically possess a metal-binding group, a
hydrophobic cap functionality that interacts with the amino acid
residues at the entrance of the N-acetyl lysine binding channel
and an aliphatic spacer connecting the cap and the metal binding
group. The factors contributing to the biological activity can be
analyzed through the use of different physicochemical descriptors
in the generation of quantitative structure–activity relationship
(QSAR) models. Due to the flexibility of the spacer group between
the metal binding and cap groups, it is difficult to choose a suitable
conformation to achieve a meaningful superimposition. Only a
few QSAR studies have been reported until now.20–23 Wang et al.20

reported QSAR models on TSA- and SAHA-like hydroxamic acid
and suggested that the shape and area of molecules are important
for their biological activity. Similarly Xie et al.23 reported a QSAR
study on a data set of 124 compounds which showed that the
van der Waals surface area and hydrophobicity are important
parameters required for the biological activity.

In order to gain further insight into the structural requirements
of HDAC inhibitors, we have performed a three-dimensional
quantitative structure–activity relationship (3D-QSAR) study
using comparative molecular field analysis (CoMFA)24 and com-
parative molecular similarity indices analysis (CoMSIA).25 In
CoMFA, it is assumed that the interaction between an inhibitor
and its molecular target is preliminarily noncovalent and shape-
dependent in nature. A QSAR can be derived correlating the
differences in steric and electrostatic fields surrounding a set of
molecules to the biological activity. This method can be used
to develop a 3D pharmacophore model26 that describes the
structure–activity relationship (SAR). The CoMSIA method of
3D-QSAR was introduced by Klebe25 in 1994, in which a common
probe atom and similarity indices are calculated at regularly spaced
grid points for prealigned molecules. CoMSIA considers five
different fields: electronic, steric, hydrophobic field and hydrogen
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bond donor and acceptor fields, and is less alignment-sensitive
than CoMFA. CoMFA and CoMSIA have been widely applied in
drug design.27–29

Results and discussion

The 3D-QSAR models for hydroxamic acid analogues were
derived using CoMFA and CoMSIA techniques. The negative
logarithm of IC50 (pIC50) was used as the biological activity in
the 3D-QSAR study (Table 1). Conformation of the molecules
used in the study was obtained by a systematic search and the
lowest energy conformer was selected and minimized using Powell
method to rms 0.001 kcal mol−1 Å−1.

Alignment of the molecules was carried out using three
techniques, namely RMS fitting (atom-based), multifit (flexible
fitting) and SYBYL QSAR rigid body field fitting. The most active
molecule 17 was used as a template molecule for alignment (Fig. 1).

Fig. 1 Molecule 17 with atoms used for superimposition are marked.
Atoms 1–4 were used for RMS I alignment and atoms 5–8 were used for
RMS II.

CoMFA

CoMFA models were generated using a training set of 40 molecules
(Table 1), with a column filtering value (r min) of 2.0. A test set of
17 molecules (Table 1) was used to check the external predictivity
of the models.

A preliminary study was performed on the atom-based align-
ment to study importance of each field individually. The cross-
validated r2

cv value from the electrostatic field only was higher than
that of the steric field only analysis. All further analyses were
performed with steric and electrostatic fields calculated at each
grid point simultaneously.

The atom-based alignment RMS I gave 0.405 with four
components, a conventional r2 (r2

conv) of 0.934, a predictive r2

(r2
pred) of 0.210 and an F value of 122.995. The alignment of the

molecules using atom-based selection RMS II shows good internal
predictivity with an r2

cv of 0.514. However, the model exhibited
rather a poor external predictivity with an r2

cv of 0.132. This is
because the alignment did not have –CONHOH as template for
superimposition.

CoMFA models generated for multifit alignment, MF I showed
r2

cv of 0.243 with one component, r2
conv of 0.571, r2

pred of −0.018,
F value of 50.610. Realignment of the molecules by field fit (FF
I) with respect to the fields of template molecule (molecule 17)
yielded r2

cv of 0.478 with seven components, r2
conv of 0.987, r2

pred of
0.327, F value of 174.687. Models generated for multifit (MF II)
and field fit (FF II) alignments using RMS II data set had poor
external predictivity (Table 2).

The activity data used in this study may have contributions
from other factors than just steric and electrostatic interactions.
The ClogP, the calculated logarithm of partition coefficient, was
calculated and added to the CoMFA table. Inclusion of ClogP in
the CoMFA model with field fit alignment increased internal (r2

cv =
0.502) as well as external predictivity (r2

pred = 0.633). We performed
all further studies with ClogP in addition to CoMFA fields.

The model generated with FF I alignment (Fig. 2) with a good
internal predictive ability (r2

cv = 0.502) and a small standard
error of estimatation (SEE = 0.260) was selected as the best
model to explain SAR and to carry out further analysis. Results
obtained from the RMS I, MF I and FF I alignments with
ClogP as additional descriptors are shown in Table 3. Observed
and predicted biological activities of the training and test sets
are plotted in Fig. 3 and 4, respectively. To further assess the
robustness and statistical confidence of the derived 3D-QSAR
model, bootstrapping analysis was performed and average of 100
runs is 0.919 (r2

bs). Cross-validation with 2 groups was performed to
ascertain the true predictivity of the model and repeated 25 times;
the mean r2

cv was 0.299. A negative value of r2 in a randomized
biological activity test revealed that the results were not based on
chance correlations. The results of these cross-validation tests are
shown in Table 5.

Fig. 2 Superimposition of all molecules using FF I.

Fig. 3 Graph of observed versus predicted activities of the training set
from FF I CoMFA analysis.

The results of 3D-QSAR using CoMFA, are represented as a
“coefficient contour” map. The contour maps obtained from the
field fit model are used to explain the SAR of molecules in the
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Table 2 Summary of CoMFA results with steric and electrostatic fields

Alignments

RMS Ia FF Ib MF Ic RMS IIa FF IIb MF IIc

r2
cv

a 0.405 0.478 0.243 0.514 0.484 0.326
Components 4 7 1 4 5 5
SEP 0.675 0.602 0.756 0.613 0.628 0.731
r2

conv 0.934 0.987 0.571 0.961 0.988 0.904
SEE 0.227 0.155 0.553 0.176 0.099 0.123
F value 122.995 174.687 50.610 168.022 551.325 123.24
Steric contribution 0.440 0.408 0.449 0.415 0.374 0.409
Electrostatic 0.560 0.592 0.501 0.585 0.626 0.591
r2

pred 0.210 0.327 −0.018 0.132 0.035 −0.120
r2

bs 0.959 0.990 0.676 0.975 0.994 0.945

a Alignment by RMS fit. b Alignment by field fit. c Alignment by multifit. d A cross-validated r2 value was obtained from the ‘leave-one-out’ method.

Table 3 Summary of CoMFA results with the additional descriptor
ClogP

RMS Ia FF Ib MF Ic

r2
cv

d 0.464 0.502 0.252
Components 3 3 2
SEP 0.641 0.609 0.752
r2

conv 0.874 0.910 0.649
SEE 0.308 0.260 0507
F value 83.441 121.227 34.152
Steric contribution 0.409 0.372 0.440
Electrostatic 0.481 0.533 0.456
ClogP 0.110 0.096 0.104
r2

pred 0.521 0.633 0.258
r2

bs 0.890 0.919 0.732

a Alignment by RMS fit. b Alignment by field fit. c Alignment by multifit.
d A cross-validated r2 value was obtained from the ‘leave-one-out’ method.

present study. The CoMFA contour maps are shown in Fig. 5 and
6. The field values were calculated at each grid point as the scalar
product of the associated QSAR coefficient and the standard
deviation of all the values in the corresponding column of the
data table (STDDEV*COEFF) and are plotted as a percentage
contribution to the QSAR equation.

Fig. 5 displays the steric contour plot. The green contours
describe regions where sterically favorable groups enhance activity
(80% contribution), and yellow contours describe regions of
unfavorable steric effects (20% contribution).

Fig. 4 Graph of observed versus predicted activities of the test set from
FF I CoMFA analysis.

Fig. 6 displays the electrostatic contour plot. The blue contours
describe regions where positively charged groups enhance activity
(80% contribution), and red contours describe regions where neg-
atively charged groups enhance the activity (20% contribution).

CoMSIA

The CoMSIA analysis was performed using steric, electrostatic,
hydrophobic, and hydrogen bond donor and acceptor descriptors.
Only a few combinations of descriptors were used, which are
complimentary to previously generated CoMFA models. Only
FF I alignment was used for CoMSIA analysis. All the results
of CoMSIA are shown in Table 4. CoMSIA models show lower

Table 4 Results of CoMSIA analysis

SEa SEHa SEAa SEHAa SEHADa

r2
cv

b 0.297 0.343 0.419 0.441 0.534
Components 7 5 8 5 7
r2

conv 0.984 0.976 0.991 0.975 0.987
SEE 0.118 0.138 0.091 0.140 0.109
F value 274.093 276.292 404.253 270.407 350.063
Steric contribution 0.406 0.280 0.316 0.218 0.179
Electrostatic 0.594 0.415 0.430 0.311 0.272
Hydrophobic 0.000 0.304 0.000 0.224 0.196
Hydrogen bond acceptor 0.000 0.000 0.254 0.246 0.197
Hydrogen bond donor 0.000 0.000 0.000 0.000 0.155
r2

pred 0.054 0.286 0.304 0.389 0.464
r2

bs 0.990 0.981 0.993 0.989 0.989

a S = steric; E = electroststic; H = hydrophobic, A = hHydrogen bond acceptor, D = hydrogen bond donor. b The same as in Table 2.
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Table 5 Results of analysis with cross validation for 2 groups and
randomized biological activities

r2
cv for 2 groupsa Randomized r2 b

CoMFAc CoMSIAd CoMFAc CoMSIAd

Mean 0.299 0.275 −0.359 −0.240
SD 0.117 0.085 0.023 0.064
High 0.438 0.424 −0.082 −0.063
Low 0.064 0.116 −0.463 −0.381

a Cross-validated r2 for 2 groups with optimum number of components,
average of 25 runs. b Cross-validated r2 with randomized biological activity,
average of 25 runs c CoMFA model generated by field fit. d CoMSIA
analysis by combined steric, electronic, hydrophobic and hydrogen bond
donor and acceptor fields.

Fig. 5 CoMFA steric STDEV*COEFF contour plots from the field fit.
Sterically favored areas are represented by green polyhedra. Sterically
disfavorable are represented by yellow polyhedra. The active molecule
17 is shown in ball-and-stick representation.

Fig. 6 CoMFA electrostatic STDEV*COEFF contour plots from the
field fit. Positive-charge favored areas are represented by blue polyhedra.
Negative-charge favored areas are represented by red polyhedra. The active
molecule 17 is shown in ball-and-stick representation.

predictive properties than those of CoMFA models. In all models
the electronic field is the common factor indicating the importance

of electrostatic interactions for the present series of molecules.
The model with steric, electronic and hydrogen bond acceptor
descriptors has a good predictivity (r2

pred) of 0.304. Addition of
a hydrophobic descriptor to this model caused an increase in
the r2

cv (0.441). Combination of all fields gave a CoMSIA model
with proper balance of all statistical terms. The models showed
higher r2

cv (0.534) and a considerable r2
pred (0.464) values. The model,

characterized by a good r2
conv (0.987) and a lower SEE (0.109), was

selected as the best model to generate contour maps and explain
the SAR. To further assess and validate the derived 3D-QSAR
model, bootstrapping analysis was performed and average result
of 100 runs is 0.989 (r2

bs). To ascertain the true predictivity of the
model, cross-validation with 2 groups was performed 25 times
and the mean r2

cv was 0.275. A negative value of r2 in a randomized
biological activity test revealed that the results were not based on
chance correlations. The results of CoMSIA are summarized in
Table 4 and the observed versus predicted biological activities of
the training and test sets are plotted in Fig. 7 and 8.

Fig. 7 Graph of observed versus predicted activities of the training set
from FF I CoMSIA analysis.

Fig. 8 Graph of observed versus predicted activities of the test set from
FF I CoMSIA analysis.

The steric, electrostatic, hydrophobic and hydrogen bond donor
and acceptor contours of CoMSIA are shown in Fig. 9–13,
respectively. The steric fields (green, more steric bulk favored;
yellow, steric bulk disfavored), electrostatic fields (blue, posi-
tive charge favored; red, negative charge favored), hydrophobic
fields (yellow, hydrophobic favored; white, hydrophobic disfa-
vored), hydrogen bond acceptor fields (magenta, favored; red,
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Fig. 9 CoMSIA steric fields. Yellow indicates sterically unfavorable
region; green indicates a sterically favorable region. The active molecule
17 is shown in a ball-and-stick representation.

Fig. 10 CoMSIA electrostatic fields. Positive-charge favored areas are
represented by blue polyhedra. Negative-charge favored areas are repre-
sented by red polyhedra. The active molecule 17 is shown in a ball-and-stick
representation.

disfavored) and hydrogen bond donor fields (cyan, favored; purple,
disfavored).

Interpretation of QSAR models

The CoMFA and CoMSIA analyses were performed on a series
of HDAC inhibitors. The conformations of the molecules were
generated from a systematic search of all the rotatable bonds with
a uniform increment. The rotation of the spacer produces many
low energy conformations. The lowest energy conformation of the
all the molecules was used in the study.

CoMFA

Alignment of the molecules is important for CoMFA studies. In
the present study we have aligned these ligands onto the template
structure (molecule 17) using two different strategies.

Fig. 11 CoMSIA hydrophobic fields. Yellow indicates regions where
hydrophobic substituents enhance activity; white indicates hydrophobic
substituents reduce activity. The active molecule 17 is shown in a
ball-and-stick representation.

Fig. 12 CoMSIA hydrogen bond acceptor fields. Magenta indicates
regions where hydrogen bond acceptor substituents enhance activity; red
indicates hydrogen bond acceptor substituents reduce activity. The active
molecule 17 is shown in a ball-and-stick representation.

The PLS analysis on RMS I model was performed using a
threshold column filtering value of 2.0 kcal mol−1. The results
of different alignments are reported in Table 2. The analysis
showed that electrostatic fields play a major role in binding to
the HDAC active site. The CoMFA models were validated by
predicting the activity of the external test set. The results obtained
show that RMS I alignment produces a statistically significant
model. RMS II has improved internal predictivity but the external
predictivity of the model was reduced. These analyses indicate that
the hydroxamic acid group is very important for alignment. The
hydroxamic acid is important for enzyme inhibitory activity, as
it coordinates the zinc ion through CO and OH groups. It also
forms hydrogen bonds between its NH and OH groups and the
two charge relay systems His131/Asp166 and His132/Asp173 and
between its CO and the Tyr297 hydroxyl group.19

Multifit alignment decreased the predictivity whereas field fit
alignment showed improved predictions in both cases. Slight
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Fig. 13 CoMSIA hydrogen bond donor fields. Cyan indicates regions
where hydrogen bond donor substituents enhance activity; purple indicates
hydrogen bond donor substituents reduce activity. The active molecule 17,
is shown in a ball-and-stick representation.

variation in the alignment rules leads to dramatic differences
in the external predictions. The good internal and external
predictions with FF I alignment support the use of these atoms
for superimposition.

An additional descriptor was added to the CoMFA table to
study the influence of other factors on the CoMFA results.
Inclusion of ClogP in the CoMFA table improved the statistical
results of the FF I model. Hydrophobicity is important for HDAC
inhibition.

PLS analysis on FF I was also performed using the 2 group
cross-validation procedure (Table 5). The r2

cv values observed
during 25 cross-validation runs were less than those observed from
‘leave one out’. In no cases were these values were negative, and
they showed good internal consistency. The field fit alignment
FF I was used to analyze the CoMFA contour maps as this
model exhibited good internal as well as external predictivity. The
CoMFA steric and electrostatic maps are shown in Fig. 5 and 6,
respectively.

Fig. 5 depicts the steric contour plot. The lipophilic fragment
of the molecule was surrounded by the sterically favorable green
contours. The most-active molecule 17 has a phenyl ring embedded
in this green region. Other sterically-favorable green contours are
observed near the spacer chain. This green contour is surrounded
by the unfavorable yellow region. A substitution on the spacer
atoms adjacent to the phenyl ring (as that of TSA) is favored,
but any substitution on the carbon next to the hydroxamic
acid functional group is unfavorable. This also suggests that the
orientation of the bulky groups at these positions is important for
activity.

Fig. 6 displays the electrostatic contour plots. A red contour
was found near the phenyl ring of compound 17, suggesting that
a high electron density in this region increases the activity. A large
negative-charge unfavorable blue contour was found to surround
the spacer chain. This indicates that substitutions in this region
with high electron density reduce activity and emphasizes the
necessity of positively charged groups; hydroxamate is essential
for HDAC activity.

CoMSIA

CoMSIA analysis was performed for field fit alignment as it gave
the best model in CoMFA. All the CoMSIA fields were considered
for analysis. A combination of steric, electrostatic, hydrophobic
and hydrogen bond donor and acceptor fields gave the best
QSAR model with good internal as well as external predictivity.
The model was further validated using 2 groups method and
randomization tests. Fig. 9–13 show the CoMSIA contour maps
with the most active molecule.

The steric contour maps of CoMSIA (Fig. 9) are also similar
to CoMFA steric maps. The electrostatic contour maps are
shown in Fig. 10. CoMSIA shows blue contours over the
hydroxamic acid group, which signifies the importance of this
group. The red polyhedra over the phenyl ring indicate that
the presence of electron-rich functional groups at this position
increase the activity. Analysis of CoMSIA hydrophobic maps
(Fig. 11) indicates that a lipophilic-favorable yellow region is
found near the aromatic ring. This indicates that lipophilicity
of the cap portion of the molecule is important for activity. A
hydrophilic-favorable white contour is observed surrounding the
hydroxamate functional group. In the present study, hydrogen
bond acceptor fields (Fig. 12) provide further support for the
role of the positively-charged hydroxamate group. Hydrogen bond
acceptor-unfavorable red polyhedra observed at the phenyl ring
indicate that the presence of electron-rich groups improves activity.
Hydrogen bond donor maps (Fig. 13) show hydrogen bond donor-
favorable cyan contours near the hydroxyl group of hydroxamic
acids.

The role of both the steric and electrostatic contribution can
be clearly explained by analyzing the molecules 25, 26 and 28.
Molecule 25, due to the double bond in its spacer chain, loses its
orientation towards the sterically favorable region. Molecule 26
shows lesser biological activity, due to an additional methyl group
adjacent to the hydroxamic acid group, which is also oriented
towards the sterically unfavourable region. Molecule 28, with
an electron-withdrawing chloro group substituted on the para
position of the side chain, enhances the potency of the molecule,
due to the proper orientation towards steric- and electrostatic-
favorable regions. Molecules 32, 33 and 37 are less active. The
bulky phenyl ring substituents of these molecules are oriented
towards the sterically unfavourable yellow region. Molecule 15 has
comparable biological activity to that of the most active molecule
17, because of the proper steric and electrostatic interactions of its
hydrophobic phenyl groups.

Experimental

Biological data

A data set consisting of 57 hydroxamic acid analogues was taken
from the literature.15–17 The structure of the compounds and their
biological data are given in Table 1. In this QSAR study, the
biological activity of each compound has been expressed as the
negative logarithm of normalized IC50 (pIC50). These normalized
IC50 values, and the negative logarithm of normalized IC50 (pIC50)
of compounds were taken from the literature and used in the
present study.23 Thus, the data correlated linearly to the free energy
change. A training set of 40 molecules (Table 1) was used for
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the generation of QSAR models. The training set molecules were
selected in such a way that they contains information in terms of
both their structural features and biological activity ranges. The
most active molecules were included, so that they can provide
critical information on pharmacophore requirements. Several
moderately active and inactive molecules were also included, to
spread out the range of activities. A test set of 17 molecules (40–56,
Table 1) was used to access the predictive ability of the generated
models. The test molecules represent a range of biological activity
similar to the training set.

Computational details

All computational studies were performed using SYBYL 6.9.130

with a standard Tripos force field.31 The compounds were con-
structed from the fragments in the SYBYL database with standard
bond lengths and bond angles. Geometry optimization was carried
out using the standard Tripos forcefield with distance dependent-
dielectric function and energy gradient of 0.001 kcal mol−1 Å−1.
The initial conformations were obtained from a systematic search.
The lowest energy conformers were selected and minimized using
the Powell method till root-mean-square (rms) deviation 0.001
kcal mol−1 Å−1 was achieved. Partial atomic charges required
for calculation of the electrostatic interaction were computed
by a semiempirical molecular orbital method using AM1 in the
MOPAC program.

Alignment rules.

The “alignment rule”, i.e., the positioning of a molecular model
within the fixed lattice, is by far the most important input variable
in CoMFA, since the relative interaction energies depend strongly
on relative molecular positions. The most active molecule 17 was
used as a template for aligning the other molecules.

In the present study, we have superimposed molecules by three
alignment rules: (1) atom-based alignment, (2) multifit alignment,
(3) field fit alignment.

Alignment (1) was done by atom-based fitting of the atoms to
the most active molecule, 17. (a) The hydroxamic acid group of
the molecules was used for rms fitting (RMS I) and (b) carbonyl
group and phenyl ring atoms for RMS II, both as shown in Fig. 1.

Alignment (2) of the molecules was carried out by flexible fitting
(multifit) of atoms, of the molecules to the template molecule 17.
This involved energy calculations and fitting onto the template
molecule by applying force (force constant 20 kcal mol−1) and
subsequent energy minimization.

Alignment (3) was carried out using the SYBYL QSAR rigid
body field fit command within SYBYL and using compound 17
as template molecule. The superimposition of all the molecules is
shown in Fig. 2.

CoMFA and CoMSIA interaction energies.

For each alignment, the steric and electrostatic potential fields for
CoMFA were calculated at each lattice intersection of a regularly
spaced grid box. The lattice spacing was set to a value of 2.0 Å in
all X , Y and Z directions. The van der Waals potential (Lennard-
Jones, 6–12) and the columbic term, which represent, respectively,
steric and electrostatic fields, were calculated using the Tripos force
field. A distance-dependent dielectric constant of 1.0 was used. A

sp3 carbon atom with van der Waals radius of 1.52 Å and +
1.0 charge was served as the probe atom to calculate steric and
electrostatic fields. The steric and electrostatic contributions were
truncated to ±30 kcal mol−1. The electrostatic contributions were
ignored at lattice intersections with maximum steric interactions.

CoMSIA calculates similarity indices at the intersections of
the surrounding lattice. Five physicochemical properties steric,
electrostatic, hydrophobic, hydrogen bond donor and acceptor
were evaluated, using a common probe atom with 1 Å radius and
charge, hydrophobicity and hydrogen bond property of +1.0. The
attenuation factor was set to default vale, 0.3.

Calculation of ClogP

The ClogP values for 57 molecules were calculated using
ClogP/CMR application within Sybyl 6.9.1. These methods are
developed by the Biobyte Corporation.

Partial least square (PLS) analysis

The CoMFA and CoMSIA descriptors were used as independent
variables and pIC50 as dependent variables in the PLS32 regression
analysis to derive the 3D-QSAR models using the standard
implementation in the Sybyl package. Initially, PLS was carried
out in conjugation with the ‘leave-one-out’ (LOO)33 option to
determine the optimum number of components.

The results from cross-validation analysis were expressed as the
cross-validated r2 value (r2

cv), which is defined as:

r2
cv = 1 − PRESS

∑
(Y − Ymean)2

,

where PRESS = R (Y − Y pred)2.
The number of components that result in the highest r2

cv and
lowest standard error of predictions (SEP) were taken as the
optimum. Equal weights were assigned to steric and electrostatic
fields using CoMFA_STD scaling option. To speed up the analysis
and reduce the noise, a minimum filter value “r” of 2.0 kcal mol−1

was used. The LOO method of cross-validation is rather obsolete
and it generally gives high r2 value. Final analysis was performed
to calculate the r2

conv with a number of cross-validation groups set to
zero using the optimum number of components. To further assess
the robustness and statistical confidence of the derived models,
bootstrapping analysis (100 runs) was performed. The statistical
results obtained for CoMFA analysis are shown in Table 2 and 3.

To perform a more rigorous statistical test, cross-validation
using 2 groups was carried out for the field fit analysis of CoMFA
and CoMSIA. In this case, the data set is randomly divided into
two groups, and the activity of the compounds from one group is
predicted using the model from the other group. The process of
group cross-validation was performed 25 times. The final r2

cv value
was calculated by taking the mean of 25 runs. These r2

cv values were
compared with r2

cv obtained from LOO for each PLS analysis. The
statistical results obtained from cross-validation with 2 groups for
CoMFA and CoMSIA analyses are shown in Table 5.

To check the probability of chance correlation, PLS analysis
was performed by randomization of the biological activity. This
was done by randomly changing the biological activity data and
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performing PLS analysis to calculate the r2
cv value for field fit of

CoMFA and CoMSIA. The process was repeated 100 times.

Predictive r2 value (r2
pred)

To test the predictive power of the derived CoMFA and CoMSIA
models, biological activities of the test set molecules were predicted
using models derived from training set. The plot of predicted versus
observed activity of test set are shown in Fig. 3–4 and 7–8 based
on CoMFA and CoMSIA, respectively.

The predictive r2 value was calculated using the following
formula:

r2
pred = SD − PRESS

SD
,

where SD is the sum of squared deviation between the biological
activities of the test set molecule and the mean activity of the
training set molecules and PRESS is the sum of squared deviations
between the observed and the predicted activities of the test
molecules.

Conclusions

The CoMFA and CoMSIA methods have been applied to derive
3D-QSAR models for hydroxamic acid HDAC inhibitors. The
models obtained using these methods showed high correlative and
predictive abilities. A high bootstrapped r2 value indicates that a
similar relationship exits in all molecules. Inclusion of ClogP as
an additional descriptor increased the statistical significance of the
model, indicating that lipophilicity enhances the HDAC inhibitory
activity. Different alignments were considered for the study.
The atom-based alignment with the hydroxamic acid functional
group gives a better result than other atom-based alignment. It
emphasizes the importance of the interaction of hydroxamic acid
with the enzyme residues. Out of all these alignments, the field
fit alignment (along with ClogP) resulted in the best CoMFA
model. The same alignment was also considered for CoMSIA
where all five fields were considered in different combinations.
The model generated using all five fields gave a statistically-
significant model and explained the observed biological activities.
The contour maps from both the models are similar in explaining
influence of substitution on activity. The substitution by electron
rich functional groups on the phenyl ring may improve activity.
Hydrogen bond acceptor and donor groups also enhance the
activity. Overall, electrostatic interactions play a major role in
binding to the HDAC active site.
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